TRIM_MEAN
Download Flojoy Studio to try this app
  
 The TRIM_MEAN node is based on a numpy or scipy function. The description of that function is as follows:
    Return the mean of an array after trimming distribution from both tails.
    If `proportiontocut` = 0.1, slices off 'leftmost' and 'rightmost' 10% of scores.
    The input is sorted before slicing.
    Slices off less if proportion results in a non-integer slice index (i.e. conservatively slices off 'proportiontocut').  Params:    a : array_like  Input array.   proportiontocut : float  Fraction to cut off of both tails of the distribution.   axis : int  Axis along which the trimmed means are computed.
Default is 0.
If None, compute over the whole array 'a'.     Returns:    out : DataContainer  type 'ordered pair', 'scalar', or 'matrix'    
Python Code
from flojoy import OrderedPair, flojoy, Matrix, Scalar
import numpy as np
import scipy.stats
@flojoy
def TRIM_MEAN(
    default: OrderedPair | Matrix,
    proportiontocut: float = 0.1,
    axis: int = 0,
) -> OrderedPair | Matrix | Scalar:
    """The TRIM_MEAN node is based on a numpy or scipy function.
    The description of that function is as follows:
        Return the mean of an array after trimming distribution from both tails.
        If `proportiontocut` = 0.1, slices off 'leftmost' and 'rightmost' 10% of scores.
        The input is sorted before slicing.
        Slices off less if proportion results in a non-integer slice index (i.e. conservatively slices off 'proportiontocut').
    Parameters
    ----------
    a : array_like
        Input array.
    proportiontocut : float
        Fraction to cut off of both tails of the distribution.
    axis : int, optional
        Axis along which the trimmed means are computed.
        Default is 0.
        If None, compute over the whole array 'a'.
    Returns
    -------
    DataContainer
        type 'ordered pair', 'scalar', or 'matrix'
    """
    result = scipy.stats.trim_mean(
        a=default.y,
        proportiontocut=proportiontocut,
        axis=axis,
    )
    if isinstance(result, np.ndarray):
        result = OrderedPair(x=default.x, y=result)
    else:
        assert isinstance(
            result, np.number | float | int
        ), f"Expected np.number, float or int for result, got {type(result)}"
        result = Scalar(c=float(result))
    return result